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Three-dimensional underwater vibrations of a geometrically non-linear cable with a
weight at the lower end are investigated. The length of the cable is time-dependent. A set
of non-linear, time-varying differential equations describing this system is derived by
Hamilton’s principle and the variable-domain finite element method. The results of
numerical simulation are presented for constant-speed and sinusoidal axial motions of the
cable. The vibration responses of three initial conditions are shown. The effects of initial
displacements, initial tensions due to gravity and the hydrodynamic forces on the non-linear
longitudinal and transverse amplitudes are presented. Finally, some conclusions are drawn.
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1. INTRODUCTION

Submerged cables are used extensively in oceanographic research, hydrographic surveying,
salvage, telecommunications, fishing, offshore technology and towing. These areas in
engineering applications require accurate analysis to predict their static and dynamic
behavior. Various approaches have been devoted to the analysis of underwater cable
systems. Analyses of the three-dimensional (3-D) motion of a towed cable system can be
found in an article by Sanders [1]. The finite difference method was employed but the
inertial forces were ignored. Delmer et al. [2] used the finite element method to handle
cables with time-varying length. Ablow et al. [3] used the finite difference method in the
local cable coordinate formulation. Milinazzo et al. [4] employed a second-order finite
difference approximation for the governing equations of the 3-D motion of a towed cable.
Delmer et al. [5] studied the 3-D geometric behavior of cable-towed acoustic array systems
by using the lumped element method and the stiff integration. Hann [6] analyzed planar
oscillation of hoisting cables for submersibles. Hover et al. [7] extended a matrix method
for mooring systems to address the dynamic responses of towed underwater systems.
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Banerjee and Do [8] modelled an underwater cable as a chain of rigid rods which are
connected to one another by two-degree-of-freedom hinges in conjunction with soft
rotational springs. Khan and Ansar [9] derived equations of motion for a multi-component
mooring cable by using Lagrange’s modified equation. However, these studies consider a
cable system of fixed length with no axial motion.

Recently, vibration of axially moving materials has received a great deal of attention
in literature. A comprehensive review of the extensive researches in all types of axially
moving material problems has been presented by Wickert and Mote [10]. In most of these
studies, the equations of motion are described on a fixed spatial domain. Vibration
problems of materials whose effective lengths vary with time have been the subject of recent
interest. Tabarrok et al. [11] studied the problem of a cantilever beam whose length varies
with time. They used Newton’s second law to derive the equations of motion. Approximate
solutions were based on the Galerkin method associated with time-dependent basis
functions. This approach method was also used by Wang and Wei [12] to analyze
vibrations for a moving flexible robot arm; by Yuh and Young [13] to study the dynamic
modelling of an axially moving beam in rotation; and by Fung and Cheng [14] to
investigate the free vibration of a non-linear coupled string/slider system with a moving
boundary.

A related problem involving free vibration induced by initial displacements for a string
was presented in a series of papers by Kotera and co-workers [15–19]. In these studies,
the string length is time-dependent, a linear damping is considered and a weight is attached
at one end of the string. Stylianou and Tabarrok [20] studied an axially moving beam and
used the finite element method to obtain the transient amplitudes. Al-Bedoor and Khulief
[21] studied the vibrations of an elastic beam with prismatic and revolute joints by using
the Lagrangian approach in conjunction with the assumed modes technique. Terumichi
et al. [22] studied the non-stationary vibrations of a string with time-varying length, and
a mass-spring system attached at the lower end.

In studying the vibration problems of strings with time-dependent lengths, the methods
of solving these problems inevitably differ from the classical methods of treating the fixed
domain problems. For instance, the concept of natural modes and frequencies becomes
meaningless because the natural frequencies become time-dependent as the length of the
string varies and the independence of natural modes of oscillation is lost. Traditionally,
the finite element formulations are normally carried out by using the fixed-size element
length. In order to analyze the problems with time-dependent domains, the technique of
finite element analysis [20] is utilized in this paper. While the number of elements remains
fixed, the size of the elements changes with time. To this end, a variable-size finite element
is formed with the size having a prescribed function of time.

The objective in this study, is to investigate the dynamics of an underwater, drawn cable
with an attached mass. The analysis includes gravitational and hydrodynamic effects as
well as the drag and inertia effects of water on the cable. The investigation begins with
the derivation of a continuum model describing the cable spatial response. A set of
non-linear equations governing the motion of a cable with time-varying length is derived
by Hamilton’s principle. A variable-domain finite element method is used to discretize the
non-linear equations, and the Runge–Kutta method is used to integrate the discretized
equation. The numerical simulations for various parameters are conducted.

2. SYSTEM DESCRIPTION

As illustrated in Figure 1, a co-ordinate system x, y, z with unit vectors i, j, k is used
to describe the cable configuration. An axially moving cable is modelled as a 1-D,
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homogeneous elastic continuum which obeys the linear stress–strain law. The cable is
wound on a drum at the top end and is attached with a mass m at the lower end. Three
different configurations are distinguished: (i) the characteristics of the cable in the natural
configuration (zero stress and strain field) are r0, mass per unit length, A, area of the
normal section, E, elastic material modulus; (ii) in initially stressed configuration P, the
length at time t is l(t), transport velocity of cable particles is ẋ and acceleration is ẍ; (iii)
the deformed configuration Pv is occupied by the cable during the motion under static and
dynamic loads.

2.1.    

The position vector of a material particle in configuration P on the axially moving
cable is

r= x(t)i. (1)

Since the cable has axial motion, the position x is a function of time. By assuming P
to be the reference configuration for the cable motion, the dynamic displacement

Figure 1. Cable with time-varying length.
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vector is given by

u(x, t)= u(x, t)i+ v(x, t)j+w(x, t)k, (2)

where u, v, and w are displacements in three directions, respectively. Then, the position
vector of a material particle on the cable in configuration Pv is expressed as

rv = r+ u=[x(t)+ u(x, t)]i+ v(x, t)j+w(x, t)k. (3)

The Lagrangian strain in Pv is defined as

ov = 1
201rv

1x0 ·
1rv

1x0 −11, (4)

in which x0 denotes the position of the material particle on the cable in the natural
configuration.

Since the cable is hung under not only the weight of the attached mass but also its own
weight, the initial tension H can be expressed as

H(x)=mg+ rg(l− x), (5)

where r is the mass per unit length in configuration P and g is the gravitational
acceleration. The conservation of mass states that

r= r0 dx0

dx
=

r0

1+ o0
, (6)

where

o0 =
H
EA

is the initial strain due to the initial tension and EA is the axial rigidity.
The initial Lagrangian strain is defined as

oi = 1
2$0 dx

dx01
2

−1%= o+ 1
2o

2, (7)

where o is the additional Lagrangian strain which refers to the initially stressed
configuration P

o=
1u
1x

+ 1
2

1u
1x

1u
1x

= ux + 1
2(u

2
x + v2

x +w2
x), (8)

and the subscript x denotes the partial derivatives with respect to the spatial variable x.
The incremental strain energy [23] of the whole cable from the static equilibrium can

be expressed as the sum of the potential energy due to the initial tension, and the potential
energy due to the dynamic stress and strain. Thus, the strain energy is

U=(1+ o0) g
l(t)

0

[Ho+ 1
2ko2] dx

=(1+ o0) g
l(t)

0

{H[ux + 1
2(u

2
x + v2

x +w2
x)]

+ 1
2k[u2

x + ux (u2
x + v2

x +w2
x)+ 1

4(u
2
x + v2

x +w2
x)2]} dx, (9)
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where

k=EA0 dx
dx01

3

,
dx
dx0 =1+ o0. (10)

It is seen that coupling between three displacements u, v and w is shown in the strain energy
function.

The velocity vector of a material particle can be obtained by differentiating equation
(3) with respect to time,

vc =
drv

dt
=(ẋ+ ut + ẋux )i+(vt + ẋvx )j+(wt + ẋwx )k, (11)

where the subscript c denotes the cable and subscripts t and x denote partial derivatives
with respect to temporal variable t and spatial variable x, respectively. The dot means
d/dt, ẋ is the axial velocity of the cable. Then, the acceleration vector of a cable particle
is

ac =
dvc

dt
=(ẍ+ utt +2ẋuxt + ẋ2uxx )i+(vtt +2ẋvxt + ẋ2vxx )j+(wtt +2ẋwxt + ẋ2wxx )k,

(12)

in which ( )tt , 2ẋ( )xt and ẋ2( )xx are the local, Coriolis and centripetal components of
acceleration, respectively [24]. The acceleration vector (12) will be used in the
hydrodynamic force. The velocity vector obtained in equation (11) is used to obtain the
kinetic energy of the cable as

T= 1
2 g

l(t)

0

rvc · vc dx

= 1
2 g

l(t)

0

r(ẋ2 +2ẋut +2ẋ2ux + u2
t + ẋ2u2

x +2ẋutux

+ v2
t + ẋ2v2

x +2ẋvtvx +w2
t + ẋ2w2

x +2ẋwtwx ) dx. (13)

2.2.  

The virtual work is done by the external forces which include the fluid force f acting
on the cable and the interaction force R between the cable and the attached mass. The
virtual work can be expressed as

dW=−R · du(l, t)+g
l(t)

0

f · du dx, (14)

where du denotes virtual displacement. In the following two sections, the fluid force f and
the interaction force R are to be described.

2.2.1. Virtual work due to hydrodynamic force
The dynamic behavior of a cable submerged in water is affected primarily by the

non-linear and non-conservative fluid force. The fluid force consists of: (i) inertial force
which is due to the fluid acceleration relative to the cable; (ii) drag force which is associated
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with the relative velocity, acts as the damping force [25] and has a great effect on the slow
drift oscillation; (iii) buoyancy force which is small enough to be negligible.

It is assumed in this paper that the fluid is incompressible, the diameter of the cable is
d and the fluid mass density is rf . Using the results of Webster [25], the fluid force per
unit length of a cylindrical cable may be expressed as:

f= fAM + fDN + fDT

=CMrf (p/4) d2aN +CNrf (d/2)=vN =vN +CTrf (d/2)=vT =vT , (15)

where fAM is the inertia force due to the added mass, fDN is the normal drag force, fDT is
the tangential drag force, vN and vT are the normal and tangential components of the fluid
velocity relative to the cable, and aN is the normal component of the fluid acceleration
relative to the cable. The tangential (normal) drag force is proportional to the square of
tangent (normal) fluid speed relative to the cable. CM is the coefficient of the added mass,
CN and CT are respectively the normal and tangential drag coefficients which are dependent
on Reynold’s number of the fluid speed relative to the cable segment. They are usually
determined experimentally and the reported values may vary slightly. Webster [25]
recorded them as

CM = 1·0, (16a)

0·0, for ReN E 0·1

CN =g
G

G

F

f

0·45+5·93/(ReN )0·33, for 0·1EReN E 400
(16b)

1·27, for 400EReN E 105

0·3, for 105 EReN

CT =61·88/(ReT )0·74,
0·062,

for 0·1EReT E 100·55
for 100·55EReT

(16c)

where the Reynold’s numbers ReN and ReT are defined as

ReN = r d=vN =/m, ReT = r d=vT =/m, (17)

and m is the viscosity of the fluid.
In order to calculate the hydrodynamic force (15), the fluid normal acceleration aN ,

normal velocity vN and tangent velocity vT must be determined first for each segment in
the finite element method.

2.2.2. Virtual work due to the attached mass
The interaction force between the cable and the attached mass is

R=m
d2

dt2 r=x= l(t) =mac =x= l(t). (18)

From equation (12), the magnitude of the component of R is

Ru =R · i=m(ẍ+ utt +2ẋuxt + ẋ2uxx )x= l(t), (19a)

Rv =R · j=m(vtt +2ẋvxt + ẋ2vxx )x= l(t), (19b)

Rw =R · k=m(wtt +2ẋwxt + ẋ2wxx )x= l(t). (19c)
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3. FINITE ELEMENT DISCRETIZATION

In this paper, a variable-domain element [20] is used and the number of elements remains
fixed. In the finite element method, the continuous displacements may be approximated
in terms of the discretized nodal displacements. The element model presented here consists
of two nodes and each node has the axial deflection u, and the lateral deflections v and
w. Each of these continuous deflections of a typical point within the jth element can be
related to the discretized nodal displacement vectors quj , qvj and qwj as well as the shape
function matrices Nj as

u(x, t)=Nj (x, l(t))quj (t),

v(x, t)=Nj (x, l(t))qvj (t), xj E xE xj+1, j=1, 2, . . . , n (20)

w(x, t)=Nj (x, l(t))qwj (t),

where n is the number of finite elements in the discretization of the cable and quj , qvj and
qwj are the 2×1 nodal displacement vectors for the deflections u, v and w, respectively.
Nj is the shape function derived from the element displacement field and is given by

Nj =$xj+1 − x
xj+1 − xj

,
x− xj

xj+1 − xj%=
n
l $ j

n
l− x, x−

j−1
n

l%. (21)

It is worth noting that Nj is a function of x and l(t). Some derivatives of the shape functions
are

Njt =
nl�
l2

[x, −x], Njtt =(ll� −2l� 2)
n
l3

[x, −x],

Njx =
1
hj

[−1, 1]=
n
l

[−1, 1], Njxt =
nl�
l2

[1, −1]. (22)

3.1.    

Substituting equations (20) into equations (9) and (13), the element Lagrangian of the
cable system can be written in terms of Nj , quj , qvj and qwj and their derivatives. That is

Lj =Tj −Uj , (23)

where Tj and Uj are detailed in the Appendix.

3.2.  

The virtual work done by the fluid force for the jth element can be expressed as

dWj =g
xj+1

xj

(fxdu+ fydv+ fydw) dx, (24)

where fx , fy and fz are three components of the fluid forces f shown in equation (17) and
du= dqT

ujNT
j , dv= dqT

vjNT
j and dw= dqT

wjNT
j are the virtual displacements. Hence, equation

(24) can be rewritten as

dWj = dqT
uj g

xj+1

xj

NT
j fx dx+ dqT

vj g
xj+1

xj

NT
j fy dx+ dqT

wj g
xj+1

xj

NT
j fz dx

= dqT
ujfxj + dqT

vj
fyj + dqT

wjfzj , (25)
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where fxj , fyj , fzj are the generalized forces in the x, y and z directions, respectively, and can
be expressed as

fxj =g
xj+1

xj

NT
j fx dx, fyj =g

xj+1

xj

NT
j fy dx, fzj =g

xj+1

xj

NT
j fz dx. (26)

The components of the hydrodynamic force (15) are shown in the Appendix.
Substituting equation (20) into equation (18), we obtain the interaction force in terms

of Nj , quj , qvj and qwj . Finally, the virtual work (14) done by both the fluid force and the
interaction force (18) between the cable and the attached mass is

dW=−R · du(l, t)+ s
n

j=1

dWj . (27)

3.3.   

The equations of motion will be obtained by substituting the element Lagrangian (23)
and the virtual work (27) into Hamilton’s principle:

g
t2

t1
$s

n

j=1

(dLj + dWj )−R · du(l, t)% dt=0, (28)

where t1 and t2 are two arbitrary times and n is the number of the element. The assembled
global finite element equations are

&M00 0
M
0

0
0
M'8Q� u

Q� v

Q� w9+ &C00 0
C
0

0
0
C'8Q� u

Q� v

Q� w9+ &Ku

0
0

0
Kv

0

0
0
Kw'8Qu

Qv

Qw9+ 8S
n
u

Sn
v

Sn
w9= 8Fu

Fv

Fw9, (29)

where the matrices are shown in the Appendix. The above equation is a set of non-linear,
second-order differential equations with variable coefficients.

If the motion of the cable is confined to the x–y plane, only the displacement
components u and v are considered. The equations of motion of the 2-D system can be
obtained from equation (29) by eliminating the displacement component Qw . For a 1-D
model, i.e., only the displacement v is considered, the equations can also easily be deduced.

4. NUMERICAL RESULTS AND DISCUSSION

The non-linear governing equations (29) are the second-order differential equations with
variable coefficients. They will be used to investigate the dynamic responses of a cable
undergoing various prescribed motions. The solutions of the equations are obtained by
the Runge–Kutta method (RK45). Kotera [15–19] published a series of studies on
vibrations of a string with time-varying length. However, these studies considered the
string with uniform motions only. In this study, we will consider the constant-speed and
the sinusoidal axial motions.

4.1. -  

The following function form for l(t) is used to generate the constant-speed axial motion

l(t)= l0 + v0t, (30)
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Figure 2. Various initial conditions.

where l0 and v0 are the initial length and velocity of the cable, respectively. We will
investigate the responses of the cable by specifying different values of the initial length and
velocity.

4.2.   

This is an ideal case for the velocity and the acceleration being constant. In this section,
we consider the axial motion with a variation in velocity, which is taken as

ẋ(t)= v0 + v1 sin vt, (31)

where v0 is the steady-state velocity, v1 and v are the amplitude and frequency of the axial
perturbing velocity, respectively. Therefore

ẋ2(t)= v2
0 + 1

2v
2
1 +2v0v1 sin vt− 1

2v1 cos 2vt, (32)

ẍ(t)=vv1 cos vt. (33)

It is noticed that equation (A13) in the Appendix includes ẋ, ẋ2 and ẍ. From equations
(31)–(33), it is seen that sin vt, cos vt and cos 2vt terms are included in the element
matrices. Thus, the parametric excitation may occur at both frequencies v and 2v of the
perturbed velocity.

Three initial conditions of the cable and its attached mass are shown in Figures 2(a)–(c).
The numerical results and discussions of these three initial conditions will be exploited in
the following sections.
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4.3.   

Consider the free vibration of a simply supported cable shown in Figure 2(a). An initial
displacement is

v(x, 0)= b sin0px
l0 1, vt (x, 0)=0, (34)

where b is the initial displacement in the midpoint of the cable. In the 2- and 3-D models,
the initial displacement and velocity in the longitudinal direction are given as

u(x, 0)=−
p

8
b2

l0
sin 02px

l0 1, ut (x, 0)=0, (35)

respectively, then the tension in the statically displaced cable is almost constant [26].
In the following numerical examples, the dimensions and properties of the cable are: the

initial tension is given in equation (5) and mg=102N, mass per unit length r=1 kg/m,
rigidity EA=104N and initial length l0 =0·5 m.

In order to choose an appropriate element number for the finite element analysis, the
case for a cable with b=0·01l0 is first considered. With the above dimensions and
properties, the periods associated with the first natural frequencies in the transverse and
longitudinal directions are 0·1 and 0·01 s, respectively. The results of transverse vibration
of the 1-D model with element numbers n=4, 8, 16, 32 are shown in Figure 3. It is obvious
that the response for n=16 is very close to that for n=32. Thus, the convergence is
achieved when n=16 is used in all the following numerical examples.

A cable with an initial length l0 =0·5 m, a small initial displacement b=0·005 m (Figure
4), and a large initial displacement b=0·05 m (Figure 5) is studied for 1- and 2-D
non-linear vibrations. Figures 4(a) and (c) show the transverse and longitudinal responses
at the midpoint, respectively. It is seen that the transient amplitudes are the same in 1-

Figure 3. The response of the simply supported cable at midpoint with various element numbers: - · -, n=32;
—, n=16; ---, n=8; ..., n=4.
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and 2-D models as the initial displacement b=0·005 m is given. The frequencies in both
the transverse and longitudinal directions agree with the theoretical values. Figures 4(b)
and (d) show the longitudinal displacements at 1

4l0 and 3
4l0. The initial conditions given in

equation (35) apply to Figure 4(b), while in Figure 4(d), u(x, 0)=0. It is seen that the
longitudinal amplitudes shown in Figure 4(b) are smoother and there is less high-frequency
interaction than in Figure 4(d).

Figures 5(a) and (c) show respectively the transient transverse and longitudinal
amplitudes with initial displacement b=0·05 m, which is ten times that of Figure 4.
It is seen that the transient amplitudes are not the same in 1- and 2-D modes. The
frequency obtained by 1-D model analysis is larger than that by 2-D model analysis.
The reason is that as the vibrations are constrained in the 1-D model, the stiffness
of the cable will increase and the frequency of vibrations also increases. The transient
amplitudes shown in Figures 5(b) and (d) have the same phenomenon as in Figures
4(b) and (d).

Figure 6 shows the longitudinal and the transverse responses of the cable with a
constant-speed motion in the axial direction. As the cable is deployed as shown in Figures
6(a) and (b), the frequency of oscillation decreases but the amplitudes increase. This
behavior is due to the decrease in the cable stiffness as the cable length increases. When
the cable is retracted as shown in Figures 6(c) and (d), the frequency of oscillation increases
and the transient amplitudes decrease. Moreover, the frequency of the cable with initial
tension H=100N+ rg(l− x)N is larger than that with constant tension H=100N. The
frequency of non-linear vibrations is larger than that of linear vibrations in both
deployment and retraction.

4.4.   

As shown in Figure 2(b), the cable is wound on a drum at the top end and attached
to a mass at the bottom end. When the attached mass is larger than the mass of the cable,
the system is like a pendulum. In the following numerical examples, all the dimensions and
properties of the cable are the same as in the previous examples.

Figures 7(a) and (b) show the longitudinal and transverse amplitudes of such a
pendulum system, respectively. The system has an initial transverse displacement
v(x, 0)= bx/l0 which is proportional to the cable length and is released from rest. Figure
7(a) shows the longitudinal amplitudes at the free end (solid line) and midpoint (dash line)
of the cable. The longitudinal amplitudes at the midpoint of the cable exhibit two
frequencies. One is

1
2pXEA

lm
=7·05 Hz

which is due to the pendulum with spring stiffness k=EA/l and the mass m. The other
is a high frequency

1
2pXEA

rl

which is the frequency of a tight cable in the axial direction. The transverse amplitudes
at the free end (solid line) and midpoint (dash line) of the cable are shown in Figure 7(b).
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The period of the transverse vibration is about 1·4 s. This is close to the theoretic value

2pX l
g

=1·42 s

of a pendulum with small angle vibrations.
Figures 8(a) and (b) show the longitudinal and transverse amplitudes of the cable,

respectively. The cable has two fixed ends and the initial displacement is shown in Figure
2(c). Since the attached mass is larger than that of the cable, the phenomenon of the
longitudinal responses [Figure 8(a)] is similar to that in Figure 7(a). The transverse
vibrations (dash line) at the midpoint of the cable shown in Figure 8(b), are similar to those
in Figure 4(a). However, the transverse amplitudes (solid line) at the free end are almost
zero.

Figure 9 shows the longitudinal and transverse amplitudes of the model shown in Figure
2(b) with a time-varying length. The initial length and the initial conditions are the
same as in Figure 7. It is seen that as the cable length increases—shown in Figures
9(a) and (c)—the frequency of oscillation decreases but the amplitudes increase. When
the cable length decreases—shown in Figures 9(b) and (d)—the frequency of oscillation
increases and the amplitudes decrease. The phenomenon is similar to that shown in
Figure 6.

4.5.  

Figure 10 shows the non-linear transient amplitudes of the midpoint of the underwater
cable using a 3-D model. Initial displacements in the x and y directions are given in
equations (35) and (34), respectively. The solid lines denote the amplitudes of the cable
under the fluid velocity 0·5 m/s in the z direction and the dash lines denote those with zero
fluid velocity. Figures 10(a)–(c) correspond to the transient amplitudes in the x, y and z
directions, respectively. In Figure 10(a), the initial axial amplitude is zero and is excited
by the non-linear terms. It is shown in Figure 10(b) that the hydrodynamic force decreases
the transient amplitudes in the y direction. However, the amplitudes in the z direction are
increases by the hydrodynamic force as shown in Figure 10(c).

Figure 11 shows the transient amplitudes of an underwater cable by using a 2-D
model. All parameters and initial conditions are the same as those in Figure 6.
Because of the action of the hydrodynamic force, both the longitudinal amplitudes
shown in Figure 11(a) and the transverse amplitudes shown in Figure 11(b) decrease
regardless of whether there is a decrease or an increase in the cable length. Figure
12 shows the transient amplitudes of a time-dependent cable. A 2-D model is used
in the analysis and the fluid velocity is vf =0·5 m/s in the y direction. It is seen that
the longitudinal amplitudes shown in Figure 12(a) decrease for both deployment and
retraction, and the transverse amplitudes shown in Figure 12(b) increase rapidly for
deployment and decrease for retraction.

Figure 13 shows the transverse amplitudes with the sinusoidal axial motion which is
expressed in equation (31). The steady state velocity is v0 =0, and the amplitude
and frequency of the perturbing velocity are v1 =0·5 m/s and v=2V, respectively,
where V is the first natural frequency of the cable in the transverse vibrations. A 1-D
model is used in the analysis. The transient amplitudes of linear analysis, non-linear
analysis and underwater vibrations are shown and it can be seen that the parametric
resonance occurs for the linear analysis, and the amplitudes diverge. The beating
phenomenon occurs for the non-linear system and the amplitudes decrease for the
underwater cable.
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5. CONCLUSION

The finite element method was used to analyze the vibrations of a 3-D cable with
time-dependent length. According to the numerical simulations with different
axial-motion, boundary conditions and the hydrodynamic forces, the conclusions drawn
are: (1) the initial condition has a great influence on the responses of vibration for the
non-linear analysis of the cable. It is found that the frequency obtained from a 1-D
transverse model analysis is larger than that from a 2-D model (longitudinal and
transverse) analysis. (2) As the tension in the cable due to gravity is considered, the
frequency is larger than that with constant tension. (3) The effects of fluid on the moving
cable are the damping of the vibration amplitudes and the decrease in the frequency of
oscillation. (4) As the axial motion is sinusoidal, the parametric resonance occurs for the
linear analysis, the beating phenomenon occurs for the non-linear system and the
amplitudes decrease for the underwater cable.
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APPENDIX

For the element kinetic and element strain energies in (23)

Tj =
r

2
[qT

ujkj1quj +2qT
ujcj1q̇uj + q̇T

ujmj q̇uj + ẋ2qT
ujkj3quj +2ẋqT

ujkj2quj +2ẋq̇T
ujcj2quj ]

+
r

2
[qT

vjkj1qvj +2qT
vjcj1q̇vj + q̇T

vjmj q̇vj + ẋ2qT
vjkj3qvj +2ẋqT

vjkj2qvj +2ẋq̇T
vjcj2qvj ]

+
r

2
[qT

wjkj1qwj +2qT
wjcj1q̇wj + q̇T

wjmj q̇wj + ẋ2qT
wjkj3qwj +2ẋqT

wjkj2qwj +2ẋq̇T
wjcj2qwj ]

+
r

2 g
xj+1

xj

ẋ2 dx+ r[ẋfj2quj + ẋfj3q̇uj + ẋ2fj1quj ], (A1)

Uj =H(1+ e0)[fj1quj + 1
2(q

T
ujkj3quj + qT

vjkj3qvj + qT
wjkj3qwj )]+ 1

2k(1+ e0)[qT
ujkj3quj ]

+1
2k(1+ e0) g

xj+1

xj

{Njxquj (qT
ujNT

jxNjxquj + qT
vjNT

jxNjxqvj + qT
wjNT

jxNjxqwj )

+1
4(q

T
ujNT

jxNjxquj + qT
vjNT

jxNjxqvj + qT
wjNT

jxNjxqwj )2} dx, (A2)
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in which kj1, kj2, kj3, mj , cj1 and cj2 are 2×2 matrices, fj1, fj2 and fj3 are 1×2 matrices. They
are defined as

kj1 =g
xj+1

xj

NT
jt Njt dx, mj =g

xj+1

xj

NT
j Nj dx,

kj2 =g
xj+1

xj

NT
jt Njx dx, fj1 =g

xj+1

xj

Njx dx,

kj3 =g
xj+1

xj

NT
jxNjx dx, fj2 =g

xj+1

xj

Njt dx,

cj1 =g
xj+1

xj

NT
jt Nj dx, fj3 =g

xj+1

xj

Nj dx,

cj2 =g
xj+1

xj

NT
j Njx dx. (A3)

It should be noted that mj , kj1, kj2 and kj3 are symmetric matrices, cj1 and cj2 are
antisymmetric matrices.

The tangent drag force can be expressed as

fDT = =fDT =t= =fDT =tx i+ =fDT =ty j+ =fDT =tzk, (A4)

where

=fDT ==CTrf (d/2) g
xj+1

xj

NT
j [v2

xt2
x + v2

y t2
y + v2

z t2
z +2(vxvytxty + vxvztxtz + vyvztytz )] dx,

(A5)

tx =(1+Njxquj )(1+2Njxquj + qujNjxNjxquj + qujNjxNjxquj + qujNjxNjxquj )
1
2,

ty =(1+Njxqvj )(1+2Njxquj + qujNjxNjxquj + qujNjxNjxquj + qujNjxNjxquj )
1
2,

tz =(1+Njxqwj )(1+2Njxquj + qujNjxNjxquj + qujNjxNjxquj + qujNjxNjxquj )
1
2. (A6)

The normal drag force can be expressed as

fDN = =fDN =n= =fDN =nx i+ =fDN =ny j+ =fDN =nzk, (A7)

where

=fDN ==CTrf (d/2) g
xj+1

xj

NT
j [v2

x [(1− t2
x )2 + (txty )2 + (txtz )2]+2vxvy [txty (t2

x + t2
y + t2

z −2)]

+v2
y [(txty )2 + (1− t2

y )2 + (tytz )2]+2vxvz [txtz (t2
x + t2

y + t2
z −2)]

+v2
z [(txtz )2 + (tytz )2 + (1− t2

z )2]+2vyvz [tytz (t2
x + t2

y + t2
z −2)] dx, (A8)
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and n is the unit normal vector of the fluid velocity relative to the cable. It can be obtained
by

n=
vN

=vN ==(vN · vN )
1
2 · vN . (A9)

The inertia force due to the added mass can be expressed as

fAM =CMrfA g
xj+1

xj

NT
j aN dx

=CMrfA$0g
xj+1

xj

NT
j aNx dx1i+0g

xj+1

xj

NT
j aNy dx1j+0g

xj+1

xj

NT
j aNz dx1k%.

(A10)

After some manipulations, equation (A10) can be transformed to the following matrix
form:

fAM = rfA2&Muf

sym.

Muvf

Mvf

Muwf

Mvwf

Mwf'8Qu

Qv

Qw9+ & Cuf

sym.

Cuvf

Cvf

Cuwf

Cvwf

Cwf'8Qu

Qv

Qw9
+& Kuf

sym.

Kuvf

Kvf

Kuwf

Kvwf

Kwf'8Qu

Qv

Qw9+ 8FANu

FANv

FANw93. (A11)

All the expressions of the matrices are non-linear and can be found in Lee [27].
For the global equations (29):

M= s
n

j=1

mj , C= s
n

j=1

cj , Ku = s
n

j=1

kuj , Kv =Kw = s
n

j=1

Kvj ,

Fu = s
n

j=1

(fuj − s0
uj ), Fv = s

n

j=1

fvj , Fw = s
n

j=1

fwj ,

Su = s
n

j=1

suj , Sv = s
n

j=1

svj , Sw = s
n

j=1

swj ,

Qu = s
n

j=1

quj , Qv = s
n

j=1

qvj , Qw = s
n

j=1

qwj . (A12)

muj =mvj =mwj = rmj ,

cuj = cvj = cwj = r(2cT
j1 + ẋcj2 − ẋcT

j2),

kuj = r(ẍcj2 − ẋkj2 − ẋ2kj3 + kT
j4 + ẋkj5)+ (H+ k)kj3,

kvj = kwj = r(ẍcj2 − ẋkj2 − ẋ2kj3 + kT
j4 + ẋkj5)+Hkj3,
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kj4 =g
xj+1

xj

NT
jttNj dx, kj5 =g

xj+1

xj

NT
j Njxt dx,

s0
uj =HfT

j1 + r(ẍfT
j3 − gfT

j3 − ẋ2fT
j1), s0

vj = s0
wj =0, (A13)

and the non-linear terms can be rewritten as

sn
uj = 1

2kSfT
j1 + (Njxquj + 1

2S)kKj3quj ,

sn
vj =(Njxquj + 1

2S)kkj3qvj ,

sn
wj =(Njxquj + 1

2S)kkj3qwj , (A14)

where

S= qT
ujNT

jxNjxquj + qT
vjNT

jxNjxqvj + qT
wjNT

jxNjxqwj . (A15)


